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Various data streams needed to
support pandemic response

e Border control (air, cruises, land)
—  TOCC: travel history; occupation; contacts; clusters

e Public health data in central/local governments for contact, tracing and quarantine
—  Symptoms data collected in workplace and school
— Medical records for doctor’s offices and hospitals
— Laboratory data to support medical decision making

e Data to managing healthcare capacity and assets
— Hospitals rooms/ICU/respirators
— Healthcare personnel
—  PPEs (e.g., masks, gloves, shields, clothing for healthcare workers)
—  Testing capacity (PCR, rapid antigen tests)



Challenges of data gathering and
Integration

* Various reporting needs: patients, physicians in hospital/clinic, schools, buses, health
department, CDC.

— Trust and participation
— Timeliness
— Interoperability of data systems: C-CDA (consolidated clinical document
architecture); FHIR (fast healthcare interoperability resources)
* Interoperability
— Information and data transfer
— timely analysis
— decision making
* Law and jurisdictions
— International and interstate/interprovincial collaboration
« trust building, need better framework to optimize global health

— Confusing laws and jurisdiction
— Ethical issues on use of data

MM Mello, CJ Wang, Science. Doi: 10.1126/science.abb9045 (2020). 4



Taiwan: Linked datasets for data analytics

National Health Insurance Customs and Immigration
Database Database

Global
NEWS



Taiwan: Doctors alerted at point of care
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Digital epidemiology with consumer @) Stanfo
technology il

* New data sources:
— cellphones (GPS); wearables (blue tooth);
— video surveillance;
— social media;
— QR codes in shops;
— Crowd sourced: internet searches and news; traffic data; symptoms self reports;
pharmacy sales
* Ethical considerations:
— unethical not to use available data;
— ethically justifiable but ethically obligatory when disease severity is high? But how?



Google-Apple Exposure Notification p Stanfor
(GAEN) with Bluetooth M N

v Allows for more thorough and timely contact [ Need early & wide-spread adoption to be

tracing than manual contact tracing effective
v People typically cannot recall or know O False alarm/ false reporting
everyone they have been in touch with for the
last 2 weeks
v Allows gathering data they would not L Data integration and regulatory issues

otherwise be able to (e.g., how long are

people in contact with cases prior to getting
sick)



Contact-tracing app curbs the spread of E Stanfor
COVID in England and Wales M N
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FIGURE 2: SELECT COUNTRIES’ COVID-19 DIGITAL CONTACT-TRACING MODELS
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Ethical Issues Raised

Privacy: cellphone location and text data (cellular signal vs. GPS):

— except for use of law enforcement, data not ordinarily used for tracking down and
imposing consequences

Autonomy: Asking for permission to access personal information; informed consent
— contact tracing through cellular records: opt in; opt out; mandatory

Equity concerns:

— new data source can improve representation of some populations in epidemiologic
analysis with availability of smart phones.

— disparities risk creating bias in new dataset (e.g., number of tests performed and positive
test rate).

Minimizing risk of errors:
— scope, speed and sources.
— need correction mechanism for mistakes.

Accountability: transparency; potential for misappropriation of data.

MM Mello, CJ Wang, Science. Doi: 10.1126/science.abb9045 (2020).
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. _______________________________________________________________
Improvements in sample analysis:

information, speed, convenience and
population-based surveillance

Traditional

* Protein antigen tests: LFA (Later flow assays); ELIZA (Enzyme-linked Immunosorbent assays)

* Genetic materials tests: RT-PCR; NAAT (Nucleic Acid Amplification Tests); and RT-LAMP (reverse transcription loop mediated
isothermal amplifications)

Information

* CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene editing tool,
— target nucleic acid sequences of interest, can provide sensitivity on part to RT-PCR:
— e.g., CARMEN, A rapid and sensitive miniaturized multiplexed CRISPR-Based diagnostic test uses microfluidic technology.
— Pairs of droplets for analysis
— Can test over 1,000 samples for single virus, or five samples for more than 150 viruses.

* Luminex essays: bead-based immunoassay: antibodies specific to their corresponding analyte
— Multiple beads as detection proteins; excited by lasers to determine the bead region
— Quantification based on magnitude of the signal

Speed
* Nanotechnology based biosensors: high sensitivity, low noise

* FET (field-effect transistor) based biosensors: speed and sensitivity comparable to PCR.
— Conductance value after viral proteins of interest bind the FET’s graphene surface, changes surface charge distribution
— Results in 20 minutes

Convenience

* freeze-dried synthetic biologic sensors in masks;
— Reagents can be embedded into paper or textile — once come into contact with fluid, rehydrate and activated. Trigger a color change.

Population-based
* Wastewater surveillance
* Airborne surveillance

15
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E Stanford

Study Purpose/Aim MEDICINE
Purpose/Aim:

To develop and deploy a new GPS-based consumer technology tool for understanding pandemic
spread to informing policy decisions and preparedness

Rationale:
* Aerosol and droplets are both important modes of transmission
* The data can be viewed in focus for a particular state, city, or zip code to inform local policy.

Hypothesis:
* Venue density and dwell time (visit duration), and interaction between duration and density will
have an impact on disease spread.

Method/Data

* Unacast data: Timestamped deidentified GPS-tagged location data from people’s mobile apps
with venue geofences, visit time and estimated visit duration, for developing model for
predicting infection spread

e Full COVID-19 vaccination rates from CDC

e Confirmed COVID-19 cases from CDC

* Machine learning with automated feature selection and mathematical derivation for candidate
features vs. expert ad hoc feature selection based on theory

© jasonwang.mdphd@gmail.com 7



Activity Feed: Clustering (Unacast) U0 Stanford
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Location Data Sources (Unacast)

MEDICINE

Stanford

Unacast location data is collected from a very
large list of publishers/apps in the US mobile
ecosystem. Unacast collects GPS data via SDKs
within Mobile Apps & also through direct
partnerships with Publishers & Mobile
Applications. The location data is only collected &
leveraged when the App is compliant with privacy
regulations (i.e. CCPA, GDPR). This data is
gathered, consolidated, and cleansed. All app
partnerships are audited by our legal team, in
order to ensure privacy compliance & proper data
collection.

Due to confidentiality agreements, we do not
divulge app name information, however we are
able to provide a full overview of the Data Supply
Portfolio from a category perspective. Please refer
to the list on the right.

App Category Distribution:

News/Magazines: 28%
Social Networking: 13%
Entertainment/Games: 12%
Tools: 1%
Communications: 7%
Video Players & Editors: 7%
Finance: 6%

Sports: 5%

Business: 4%

Dating: 4%

Lifestyle: 3%

© jasonwang.mdphd@gmail.com AL



Median Restaurant Visit in Sept.*
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Venue Class Distribution atan or

M Retailers, essential consumables/fuel

B Bars and restaurants

Retailers, non-essential/repair and
maintenance

Retailers, health and personal care stores

Accomodations, hotels, motels, B&B,
boarding houses, dormitories, RV parks

B Real estate, rental and leasing

B Transportation, urban transit, commuter rail,
busses, sightseeing, taxi, limousine, school
and employee bus (transport of people)

© jasonwang.mdphd@gmail.com =



Description of top 10 venue classes
used

I Venue Classes

Examples of businesses within venue classes:
3. Personal Service Venues — Hair salon, tattoo

Venue Classes parlor, massage center, nail salon, ...
Venue Class Brief Description
! Healthcare Providers 4. Full service restaurant
2 General Office
3 Personal Care Services
2 Dining - Full-Service 5. Limited service restaurant
5 Dining — Limited Service
6 Fitness Centers
7 Accommodations . . .
8 Retail — Health Products 6. Fitness — Fitness centers, gyms, recreational
9 Retail — Essential Consumables and Fuel sports centers, ...
10 Retail — Other

7. Accommodations — Hotel, motel, B&B, ...

8. Health Retail — Pharmacy, health
supplements, optical, ...

9. Consumables (grocery) and fuel

24



California (West, Blue):

Data-driven model with machine learning

Stanford
MEDICINE
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Florida (South East, Purple)

Data-driven model with machine learning

Stanford
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Louisiana (South, Red)
Data-driven model with machine learning

Stanford
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Minnesota (Mid West, Purple)
Data-driven model with machine learning

Minnesota
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New York (North East, Blue)
Data-driven model with machine learning
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Texas (South, Red)
Data-driven model with machine learning
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Policy Implications

. Venue-based risk assessment can inform policy interventions and strategies for reopening

Can be used to predict future surges 3 weeks ahead of time (compared to waste- water 1
week)

Allow hospital systems to prepare needed resources (beds, respirators, people)

Inform which venues should temporally close or be kept open.

Define allowable density level (point system to keep Rt <1)

. Limitations:

Unknown masking rate in the states studied, although residents of blue states
(Democratic leaning) were more likely to have mask-wearing orders.

Unknown interaction between vaccination and self-protective actions (masking, hand
washing, social distancing)

Unknown if GPS movement data would work in tall, large buildings in dense cities
Indoor vs. outdoor distinction (many restaurants have outdoors in warm climates)
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Considerations for Reopening Society E Stanford
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Traaltlona‘ SEIR Moae‘ aoes not account *or

Repeated Infections from variants and waning E Stanfor
vaccine protection over time as seen in COVID-19 M N

SARS-CoV-2
Vaccination

Recovered
population

(R)

Susceptible
population (S)

Exposed
population (E)

Infection
Death

population

(D)

Mild Severe Critical

Infection Infection Infection

https://alhill.shinyapps.io/COVID19seir/

© jasonwang.mdphd@gmail.com e


about:blank

Comparison on methods of digital
contact tracing in different countries

=
=

" FIGURE 1: SUMMARY OF THE COMPARISON BETWEEN ISRAEL AND OTHER COUNTRIES

Legislation
for epidemics
Freedom House (excluding special

Country Global Freedom laws or orders ::“;:; iion Technology
Score triggered by €
the COVID-19
pandemic)
Centralized mandatory
: mass surveillance, facial
Sl O AL recognition, and social
scoring
Centralized mandatory
: mass surveillance
| | 76. f Public Health Erptectlcin of
srae , 11E€ Ordinance, 1940 rivacy Law, GPS-based, by the GSS;

5741-1981 oversight by the Knesset

and Supreme Court

--------------------------------------------------------------------------------------------------------------------------------------------------------------------

Source: Tehilla Shwartz Altshuler Rachel Aridor Hershkovitz, Digital Contact Tracing And The Coronavirus: Israeli And Comparative Perspectives, Brookings Foreign Policy, August 2020 37



Legislation
for epidemics
Freedom House (excluding special

Country Global Freedom laws or orders ::;:; 31,:ion Technology
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Source: Tehilla Shwartz Altshuler Rachel Aridor Hershkovitz, Digital Contact Tracing And The Coronavirus: Israeli And Comparative Perspectives, Brookings Foreign Policy, August 2020 38



Legislation
for epidemics

Freedom House (excluding special Privacy

Country Global Freedom laws or orders legislation Technology
Score triggered by

the COVID-19

pandemic)
Centralized voluntary app;
QR code-based

Civil Defense

Emergency As part of the reopening

Management Act of the economy, a new

New Zealand 97, free Privacy Act 1993

2002, Epidemic centralized but voluntary

Preparedness Act contact-tracing app based

2006 on scanning QR codes at
the entrances of public
places

Public Health Act The Privacy Act Voluntary app; BLE-based,;
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centralized

Source: Tehilla Shwartz Altshuler Rachel Aridor Hershkovitz, Digital Contact Tracing And The Coronavirus: Israeli And Comparative Perspectives, Brookings Foreign Policy, August 2020 39
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COVID-19 Workflow

Management

Symptoms Sampling Lab Tests for Contact Immunity Therapy Vaccine Recovery
& Signs (Pre- virus Tracing&  Testing . Infectious?
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SEIR model equations:

SEIR Model

Basic definitions:

- N: total population

- S number of susceptible individuals (who have not had the infection)

- E number of individuals exposed to infected people, but not developed infection yet
- I number of infected individuals

- R number of recovered/dead individuals

The equations for SEIR model are given by

95 = —pST
4F = pSI —aE
4l = qE -yl
=7l

where
- Fis the average contact rate in population, between the susceptible and infected individuals
- ais the inverse of incubation period 1/finc

- yis the inverse of mean infectious period 1/tirf
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Integrating Point System into SEIR @) Stanfor

COVID-19 Model Output Point System Output

Reduction in predicted COVID-19 after intervention

Simulate the change in the time course of COVID-10 cases after applying an intervention

Baseline
Intervention
o 150 Baseline:
E R o= 316
S r=0.13 per day
o _
o T, = 5 days
o
< 100 Intervention:
- Ro=2.26
8 r = 0.081 per day
5 T, = 9 days
E
5 50
=
0
0 50 100 150 200 250 300

Time since introduction (days)

https://tsuilab.shinyapps.io/COVID19SEIR-SocialDistance/
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Tiered system for closing businesses in
California since 2020

Every county in California is assigned to a COVID-19 risk-level tier based on:

» New cases: the average number of new cases per day, over 7 days, per 100,000 residents

» Positive tests: the percentage of coronavirus tests given per day that are positive for COVID-19

» Health Equity: positive test rates in a county’s most disadvantaged neighborhoods do not significantly
lag behind the county’s overall test positivity rate

Tier Level New Cases per 100,000* Positive Tests
] 2 ® & & & & @ M th Boj'b
Widespread PPRPPR More than7 st oo % e

PURPLE
Substantial

RED
Moderate T 1t03.9 2-4.9%

ORANGE

Minimal Lessthan1 Less than 2%
YELLOW

* Case numbers are adjusted up or down based on testing volume above or below the state median.
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9 Stanfor
What can open? MEDICINE

What’s Open in Each Tier?

Wid esprea d Most indoor businesses are closed. Mar.ay can open.t outdoor§ with mofiiﬁcations,

PURPLE for example, restaurants, places of worship, and family entertainment (mini golf).
Personal care services, for example, hair and nail salons, tattoo parlors, and piercing
shops, can open indoors with modifications.

Substantial Some indoor businesses are closed, including places that serve alcohol but don’t
RED serve food. Many can open indoors at 25% capacity (or 100 people, whichever is
fewer) for example, restaurants, places of worship, and movie theaters. Gyms can
open indoors at 10% capacity. Personal care services can open indoors with modifi-
cations. Schools may re-open for full in-person instruction once a county has been
in the red tier for at least 2 weeks. However, schools that have already reopened may
remain open if the county moves back to the purple tier.

Moderate Some indoor businesses can open with modifications. Many can open indoors at

ORANGE 50% capacity (or 200 people, whichever is fewer), for example, restaurants, places of
worship, and movie theaters. Some can open indoors at 25% capacity for example,
gyms, bowling alleys, and cardrooms. Personal care services can open indoors with
modifications.

Minimal Most indoor businesses can open with modifications. Some can open indoors
YELLOW at 50% capacity for example, restaurants, places of worship, movie theaters, gyms,
cardrooms, and bars. Personal care services can open indoors with modifications.

Find which activities and businesses are open in the four tiers (PDF)
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Stated Rationale for open/close — but 9 Stanford

what’s the evidence? MEDICINE
Why Some Activities and Businesses Can Open While Others Stay Closed

» Activities and businesses that have a lower risk of spreading COVID-19 are
allowed to open sooner.

» Higher-risk activities or businesses will be allowed to open when therisk is
determined to be less.

Schools in purple-tiered
counties cannot reopen for
in-person instruction. Howev-
er, schools that have already

» Ineach tier, an activity or business’s operations depend on whether it has the: reopened may remain open
.y .y . s if the county moves back to
Ability to Accommodate Ability to Limit the purple tier. Local health
[ Mask wearing at all imeswhile ¥ Number of people per square foot depfartments can grant waiv-
not eating and drinking X Time that an individual spends at the ers for TK-6 grades, and

schools can provide supervi-
sion, or instruction, and other
services for small groups (16

business or activity

 Physical distance betw
ysicat distance between X Time that an individual spends in close

individuals from different

households contact with others o individuals total per group).
_ X People from one household mixing with Schools may re-open for full
¥ increased airflow (such as other households in-person instruction once a
operating outdoors or opening X Amount of physical interactions of visitors/ county has been in the red
windows and doors) patrons tier for at least 2 weeks.
X Activities known to increase the spread School Re-opening
of COVID-19 (singing, shouting, and heavy Framework (PDF)
breathing)

i 1 - - -
See full Blue rint for a Safer Econom gmdance December 2020 - © 2020, California Department of Public Health

46



COVID-19 publications

* Updates
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Response to COVID-19 in Taiwan
Big Data Analytics, New Technology, and Proactive Testing

Taiwan is 81 miles off the coast of mainland China and
was expected to have the second highest number of
cases of coronavirus disease 2019 (COVID-19) due toits
proximity to and number of flights between China.’
The country has 23 million citizens of which 850 000
residein and 404 000 workin China.>*In 2019, 2.71 mil-
lion visitors from the mainland traveled to Taiwan.*
As such, Taiwan has been on constant alert and ready to
act on epidemics arising from China ever since the se-
vere acute respiratory syndrome (SARS) epidemic in
2003. Given the continual spread of COVID-19 around
the world, understanding the action items that were
implemented quickly in Taiwan and assessing the
effectiveness of these actions in preventing a large-
scale epidemic may be instructive for other countries.
COVID-19 occurred just before the Lunar New Year
during which time millions of Chinese and Taiwanese
were expected to travel for the holidays. Taiwan quickly
mobilized and instituted specific approaches for case

wm i

Recognizing the Crisis
In 2004, the year after the SARS outbreak, the Taiwan
government established the National Health Com-
mand Center (NHCC). The NHCCis part of a disaster man-
agement center that focuses on large-outbreak re-
sponse and acts as the operational command point for
direct communications among central, regional, and lo-
cal authorities. The NHCC unified a central command sys-
tem that includes the Central Epidemic Command Cen-
ter (CECC), the Biological Pathogen Disaster Command
Center, the Counter-Bioterrorism Command Center, and
the Central Medical Emergency Operations Center.>
On December 31, 2019, when the World Health
Organization was notified of pneumonia of unknown
causeinWuhan, China, Taiwanese officials beganto board
planes and assess passengers on direct flights from
Wuhan for fever and pneumonia symptoms before pas-
sengers could deplane. As early as January 5, 2020,
notification was expanded to include any individual who

Id

© jasonwang.mdphd@gmail.com



JAMA Pediatrics, August 11, 2020

2 Stanford

» MEDICINE

VIEWPOINT

C. Jason Wang, MD,
PhD

Center for Policy,
Outcomes and
Prevention, Division of
General Pediatrics,
Department of
Pediatrics, Stanford
University School of
Medicine, Stanford,
California; and Center
for Health Policy.
Freeman Spogli
Institute for
International Studies,
Stanford, California.

Henry Bair, BS, BA

Stanford University
School of Medicine,
Stanford. California.

Opinion

Operational Considerations on the American Academy of
Pediatrics Guidance for K-12 School Reentry

There is general consensus among experts that K-12
schools should aim to reopen for in-person classes dur-
ing the 2020-2021school year.Z Globally, children con-
stitute a low proportion of coronavirus disease 2019
(COVID-19) cases and are far less likely than adults to ex-
perience serious illness.>* Yet, prolonged school clo-
sure can exacerbate socioeconomic disparities, am-
plify existing educationalinequalities, and aggravate food
insecurity, domestic violence, and mental health
disorders.® The American Academy of Pediatrics (AAP)
recently published its guidance on K-12 school reentry.'
However, as many school districts face budgetary con-
straints, schools must evaluate their options and iden-
tify measures that are particularly important and fea-
sible for their communities.

We suggest that school districts engage key stake-
holders to establish a COVID-19 task force, composed of
the superintendent, members of the school board,

In terms of protective equipment, schools will need
to have a steady supply of hand sanitizer for students and
staff each day. In districts where families cannot afford
face coverings, schools will need to provide them; they
can take the form of disposable surgical masks, reus-
able cloth masks, or reusable face shields. Disposable
masks cost between $0.50 to $1 each and can be used
over the course of a day. Cloth masks should be regu-
larly washed between uses. Face shields cost between
$5 to $10 and can be used as long as they maintain their
shape and remain intact. The decision of which option
to adopt and stock will depend on the number of stu-
dents and the school's budget. Transparent barriers
placed on the sides of students’ desks can further limit
the spread of respiratory droplets. Costs of transparent
barriers range from $100 to $200 per desk. As the AAP
guidance suggests, teachers who must work closely with
students with special needs or with students who are un-

© jasonwang.mdphd@gmail.com
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Annals of Internal Medicine

MEDICINE AND PUBLIC ISSUES

How to Safely Reopen Colleges and Universities During COVID-19:

Experiences From Taiwan

Shao-Yi Cheng, MD, MSc, DrPH; C. Jason Wang, MD, PhD; April Chiung-Tao Shen, PhD; and Shan-Chwen Chang, MD, PhD

Reopening colleges and universities during the coronavirus dis-
ease 2019 (COVID-19) pandemic poses a special challenge
worldwide. Taiwan is one of the few countries where schools are
functioning normally. To secure the safety of students and staff,
the Ministry of Education in Taiwan established general guide-
lines for college campuses. The guidelines delineated creation
of a task force at each university; school-based risk screening
based on travel history, occupation, contacts, and clusters; mea-
sures on self-management of health and quarantine; general hy-
giene measures (including wearing masks indoors); principles
on ventilation and sanitization; regulations on school assemblies;
a process for reporting suspected cases; and policies on school
closing and make-up classes. It also announced that a class
should be suspended if 1 student or staff member in it tested

positive and that a school should be closed for 14 days if it had 2
or more confirmed cases. As of 18 June 2020, there have been 7
confirmed cases in 6 Taiwanese universities since the start of the
pandemic. One university was temporarily closed, adopted vir-
tual classes, and quickly reopened after 14 days of contact trac-
ing and quarantine of possible contacts. Taiwan's experience
suggests that, under certain circumstances, safely reopening col-
leges and universities this fall may be feasible with a combination
of strategies that include containment (access control with con-
tact tracing and quarantine) and mitigation (hygiene, sanitation,
ventilation, and social distancing) practices.

Ann Intern Med. doi:10.7326/M20-2927
For author affiliations, see end of text.
This article was published at Annals.org on 2 July 2020.

Annals.org
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Ethics and governance for digital disease surveillance

By Michelle M. Mello'2 and C. Jason Wang!3

1Center for Health Policy/Primary Care and Qutcomes Research, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. 2Stanford Law School,
Stanford, CA, USA. 3Department of Pediatrics and Center for Policy, Outcomes and Prevention, Stanford University School of Medicine, Stanford, CA, USA. Email:
mmello@|aw.stanford.edu

The question is not whether to use new data sources but how
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How to Prevent and Manage Hospital-Based Infections During
Coronavirus Outbreaks: Five Lessons from Taiwan

C Jason Wang, MD, PhD'#, Henry Bair*, and Ching-Chuan Yeh, MD, MPH*

'Department of Pediatrics, Department of Medicine, and Department of Health Research and Policy, Stanford University School of Medicine, Stan-
ford, California; °The New School for Leadership in Health Care, Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan; Stanford University
Schoal of Medicine, Stanford, California; ‘Department of Public Health, Tzu-Chi University, Hualien, Taiwan.

uring the severe acute respiratory syndrome (SARS)

outbreak in 2003, Taiwan reported 346 confirmed cas-

es and 73 deaths.! Of all known infections, 94% were

transmitted inside hospitals. Nine major hospitals
were fully or partially shut down, and many doctors and nurses
quit for fear of becoming infected. The Taipei Municipal Ho-Ping
Hospital was most severely affected. Its index patient, a 42-year-
old undocumented hospital laundry worker who interacted with
staff and patients for 6 days before being hospitalized, became
a superspreader, infecting at least 20 other patients and 10 staff
members.>? The entire 450-bed hospital was ordered to shut
down, and all 930 staff and 240 patients were quarantined with-
in the hospital. The central government appointed the previous
Minister of Health as head of the Anti-SARS Taskforce. Ultimately
the hospital was evacuated; the outbreak resulted in 26 deaths.”
Events surrounding the hospital’s evacuation offer important les-
sons for hospitals struggling to cope with the COVID-19 pan-
demic, which has been caused by spread of a similar coronavirus.

LESSON 1: DIAGNOSIS

Flexibility about case definition is important, as is use of
clinical criteria for diagnosis when reliable laboratory tests
are not available.

Diagnosing SARS was challenging. Early symptoms such as
fever and malaise were nonspecific. Polymerase chain reaction
tests, although available, were unreliable especially in early stag-
es of the disease and had a high false-negative rate. As cases
of SARS increased rapidly, Taiwan began using fever alone for
early detection.® Patients and hospital staff received tempera-
ture measurements twice daily. Despite the late start to SARS
screening, the fever criterion identified many suspected pa-
tients, which ensured widespread detection and containment.

For COVID-19, symptoms such as fever, dry cough, and
shortness of breath can be used as clinical criteria to triage pa-
tients for quarantine in endemic areas when reliable diagnos-
tic tests are not readily available, but all frontline clinical staff
should receive daily temperature checks and/or COVID-19
tests, if available, to protect their families and the public.

LESSON 2: COORDINATION

Ineffective coordination between central and local govern-

ments can delay response, but this can be remedied.
During the SARS outbreak, the Taipei City Government and

the Taiwan central government were controlled by opposing

political parties. Responses to SARS were initially impeded by

political skirmishes, which hindered implementation of policies

© jasonwang.mdphd@gmail.com
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How Community and Unity Can Help Americans Survive

Robert H. Brook, M.D, S.cd’?, C. Jason Wang, M.D., PhD*#, and Neil S. Wenger, M.D,
M.P.H.°

®

Check for
updates

'Health Care Services, RAND Corporation, Santa Monica, CA, USA; “David Geffen School of Medicine at UCLA, Los Angeles, CA, USA;
3Departments of Pediatrics and Medicine, Stanford University, Stanford, CA, USA; “Center for Policy Outcomes and Prevention, Stanford University,
Stanford, CA, USA; ®Division of General Interal Medicine and Health Services Research, David Geffen School of Medicine at UCLA, Los Angeles,

CA, USA.

J Gen Intern Med management, analytics, and Al. The center would not need

DOI: 10.1007 /s11606-020-05829-8
© Society of General Internal Medicine 2020

to have perfected the metrics/systems to get started; it could
learn and perfect its algorithms with time, experience, and
data. To increase trust, the press could be part of the center

so that fact-based information could be communicated directly

to the public rapidly and reliably.
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COMMENTARY

Managing medication supply chains: Lessons learned from
Taiwan during the COVID-19 pandemic and preparedness

planning for the future

Shihchen Kuo', Huang-Tz Ou, C. Jason Wang

ARTICLE INFO

Article history:
Received 27 May 2020
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ABSTRACT

Coronavirus disease 2019 (COVID-19) has posed unprecedented challenges for nations
worldwide, among which medication shortages can cause a devastatingly negative impact on
global health. Using Taiwan as an example, this report describes the sources of potential
medication shortages, discusses the preparedness and contingency strategies to address
medication shortages, and outlines the evidence-based recommendations on ensuring a stable
medication supply and improving the quality and security of medicines.
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An Impact-Oriented Approach to Epidemiologicail E Stanfor
Modeling M N
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J Gen Intern Med Table 1 Considerations for Impact-Oriented COVID-19 Modeling
DOI: 10.1007/s11606-020-06230-1
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1 Agility Is the data and model providing timely
information?

2 Responsiveness  Does the data and model respond to new
evidence?

3 Transparency Are the data and model’s mechanisms and data
sources publicly available for fact-checking and
validation?

4  Usability Can the data and model be used easily,
effectively, and efficiently?

5 Accessibility Can the data and model be understood and used

by a broad audience, irrespective of scientific,
technical, and other capabilities?

6  Universality Does the data and model draw on inputs that
are defined and measured consistently?

7  Adaptability Can the model be easily modified and adapted?

8  Actionability Are there clear calls-to-action that reflect

current government policies?
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